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We present a comprehensive set of results for argon, a case study in weak interactions, using the self-consistent
polarization density functional theory (SCP-DFT). With minimal parametrization, SCP-DFT is found to give
excellent results for the dimer interaction energy, the second virial coefficient, the liquid structure, and the
lattice constant and cohesion energy of the face-centered cubic crystal compared to both accurate theoretical
and experimental benchmarks. Thus, SCP-DFT holds promise as a fast, efficient, and accurate method for
performing ab initio dynamics that include additional polarization and dispersion interactions for large, complex
systems involving solvation and bond breaking.

1. Introduction

Accurately describing chemical reactions in the condensed
phase remains a significant challenge for molecular simulations,
requiring the explicit and computationally expensive treatment
of the electrons via a quantum mechanical theory. One popular
theory that provides a compromise between speed and accuracy
is Kohn-Sham (KS) density functional theory (DFT),1,2 which
is widely used and implemented in many available software
packages. While DFT is in principle exact, a significant
deficiency of the current DFT exchange-correlation (XC)
functionals is that they are of either local character (local density
approximation, or LDA) or of semilocal character (generalized-
gradient approximation, or GGA, with an additional dependence
on density gradients). These functionals, requiring charge
overlap to result in an interaction, cannot recover the long-range
correlation needed to represent the dispersion component which
is present even at distances where charge overlap may be
negligible.3 Even the newer meta-GGA functionals (with
additional dependence on the kinetic-energy density and/or the
Laplacian of the density, i.e., TPSS)4 are still only semilocal.
Thus, standard DFT cannot accurately model weak interactions.5,6

However, since DFT is essentially parameter free, it holds
tremendous promise for describing complex chemical phenom-
ena in hydrogen-bonding fluids where dispersion effects are less
important. Examples include simulations exploring different
sampling strategies in first-principles simulations of water,7 the
liquid-vapor interface of methanol,8 benzene solvated in water,9

and the confinement of water within nanotubes and between
graphene sheets.10 Given the failure of present day XC func-
tionals to capture subtle weak interactions that are known to be
present in the aforementioned systems, one must conclude that
any good agreement with experiment or more accurate calcula-
tions for weakly bound systems is likely to be accidental. On a
positive note, DFT-GGA, by its good description of the
molecular electronic density and multipole moments, seems to

perform reasonably well for hydrogen-bonded systems such as
water near its minimum configurations5,6 in which the first-order
electrostatic interactions are dominant. Thus, systems in which
extensive hydrogen-bonded networks are formed may be
relatively well-represented by DFT XC functionals such as
BLYP or PBE,5,6,11 but neither performs satisfactorily for the
vapor-liquid coexistence curve of water.12,13

The proper description of weak interactions requires a wave
function based theory and a careful treatment of the electron
correlation. Thus, with a supermolecular approach,14 one must
use MP2 (Möller-Plesset method of second order) or, much
better, CCSD(T) (coupled-cluster expansion including single,
double, and noniterated triple excitations), the most accurate
of readily available and affordable supermolecular methods, at
least for generating potential energy surfaces (PESs) for small-
and medium-size systems (see, for example, Bukowski et al.15).
Yet another robust approach for studying weakly bound systems
is symmetry-adapted perturbation theory of intermolecular
interactions, or SAPT,16 and its more efficient variant, SAPT-
(DFT)17 (see also Hesselmann and Jansen18). SAPT yields
detailed information on the interactions by decomposing the
potential into physically interpretable components and also
enables connection with the asymptotic regime and with the
properties of the interacting monomers (see, for example,
Podeszwa et al.19 for a recent application of SAPT(DFT)).
However, the SAPT approach includes a reliance on the many-
body expansion and, perhaps more significantly, does not allow
the modeling of the breaking or formation of chemical bonds,
that is, true chemistry.

Within the computationally efficient framework of DFT,
advances are being made in the development of XC functionals3

and attempts are being made to improve the existing DFT
methodology. The recent overview by Grimme and co-workers20

organizes these attempts into three groups. Workers in the first
group attempt to develop or improve DFT XC functionals (GGA
or hybrid and/or meta-GGA) for modeling of weak bonds. Here
we mention only a few examples, and the reader is referred to
Grimme et al.20 for a more extensive list. These include the
GGA XC functionals HCTH,21 HCTH120,22 and B97-121,23 and
the hybrid meta-GGA functionals of Zhao and Truhlar such as
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M06 and M06-2X.24 The salient feature of the aforementioned
methods is that they can, in general, be used within efficient
implementations of DFT and can be directly applied to problems
concerning chemistry in the condensed phase. If these methods
are parametrized to accurate data, they will perform well
(although some testing should be done to ensure transferability).
However, their inability to recover the physics of the long-range
interaction puts these methods at risk of having accidental good
agreement with experiment or ab initio approaches. Although
it is a quite different approach, the attempt by Rothlisberger
and co-workers25-27 to reproduce weak interactions with stan-
dard DFT XC functionals by additional parametrization of
effective core potentials (ECPs) for atoms also falls into this
category.

Workers in the second and third groups do not rely on error
cancellations but rather attempt to add the missing long-range
correlation or dispersion component to the DFT functional. Thus,
the interaction energy from these approaches should have the
correct asymptotic behavior. Those in the second group attempt
to add the missing component via an orbital-based or truly
nonlocal correlation functional supplement to DFT. Two
examples are the vdW-DF approach of the group of Langreth
and Lundqvist28 and the similar ACFDT-DFT approach of Harl
and Kresse.29 However, these methods may be too expensive
to see adoption outside the groups which developed them. While
these methods hold an advantage in that they do not require
parametrization, the accuracy of the potentials obtained with
them may be lower than required. For example, the interaction
energy of Ar2 and Kr2 given by the vdW-DF approach28 differs
substantially from accurate calculations; the potential wells for
Ar2 and Kr2 are too deep by 60% and 40%, respectively, and
both are shifted outward by 5%.30 The error in the well depths
is comparable to those of DFT-GGA potentials such as PBE,
except that PBE generally makes the well depths too shallow
rather than too deep. However, the ACFDT-DFT(PBE) ap-
proach29 for Ar fcc solid does produce good results.

The third group of approaches may be labeled collectively
by the term DFT-D. They are based on the HF-D method (see
Douketis et al.,31 Wu et al.,5 and additional references therein),
which is relatively successful for rare gases and other simple
systems. In these methods the Hartree-Fock or DFT interaction
energy is supplemented by a (damped) long-range dispersion
contribution calculated from (possibly predetermined) long-
range dispersion coefficients. DFT-D methods thus require use
of DFT XC functionals which behave similarly5,32 to HF and
have a minimum of attraction (e.g., revised versions of PBE33

such as revPBE34 or RPBE35 or, alternatively, BLYP,36,37

B3LYP,38 etc.), thus avoiding the possible double-counting of
the long-range correlation, as occurs with, e.g., PW91.39 DFT-D
methods have been used by Scoles,5,32 Elstner40,41 (who,
however, supplemented an approximate DFT interaction energy),
Wu and Yang,42 Grimme,20,43 Parrinello,44 and Ortmann.45 The
various implementations of DFT-D differ in which DFT XC
functional is used, in how the dispersion coefficients are
obtained, in the damping function that is used, and in whether
terms past the leading term -C6f(r)r-6 are included (here, r is
the intermonomer separation, f(r) is a damping function, and
C6 is the leading dispersion coefficient; note that inclusion of
higher-order coefficients is needed for greater accuracy5,32). The
reader is referred to Zimmerli et al.44 for a comparative study
of various DFT-D schemes for approximating the interaction
energy of water-benzene. A possible shortcoming of many
DFT-D approaches is that the dispersion coefficients are not
updated during the course of the simulation and thus will not

be consistent with possible changes in electronic structure due
to chemical reactions. In addition, atom-atom coefficients are
needed to allow for the breaking/formation of bonds and also
for the description of intramolecular dispersion interactions
present in, e.g., large organic molecules. A possible candidate
for a self-consistent, atom-based approach is that of Silvestrelli,46

who used DFT with maximally localized Wannier function
centers to localize charge density and to compute the effective
dispersion. This approach is similar to that of Becke and
Johnson,47 who demonstrated that the position-dependent dipole
moment of the exchange hole can be used to generate dispersion
interactions between closed-shell systems.

In this work we present a theory motivated by the need to
perform accurate statistical mechanical sampling and chemistry
in the condensed phase. Recently, a self-consistent polarization
(SCP) approach in combination with a semiempirical electronic
structure method, implemented by Chang et al.,48 was used to
obtain good results for water clusters. Despite its success, one
drawback of the aforementioned approach was the requirement
of extensive parametrization. By replacing the semiempirical
method with DFT, which is a more ab initio electronic structure
method, most of the parametrization is eliminated. The salient
feature of SCP-DFT is that it is based on linear response
theory,49,50 allowing one to simultaneously and self-consistently
correct the DFT interaction with auxiliary polarization density,
thus recovering the correct classical multipole polarization and
polarizabilities. The quantum mechanical treatment of this
additional polarization yields the celebrated London dispersion
formula. Therefore, with the addition of a single parameter (for
atoms), SCP-DFT provides a self-consistent picture of polariza-
tion and dispersion and enables one to recover the interaction
energy including the dispersion component, which is otherwise
completely missing from the local and semilocal XC functionals.

To this end, we performed a comprehensive test of SCP-
DFT for argon, a case study in weak interaction. We compare
results obtained using SCP-DFT both to experiment and also
to those obtained using potentials ranging from a simple
Lennard-Jones potential to benchmark-quality, complex many-
body potentials which had been obtained by fitting the potential
parameters to spectroscopic measurements (the potential of
Aziz51) or to accurate ab initio calculations on the dimer (the
CCSD(T)/CBS potential of Patkowski et al.52) and the trimer
(the SAPT three-body potential of Lotrich et al.53 and the
CCSD(T) calculations of Podeszwa et al.54). We find that our
results for the dimer potential, second virial coefficients, cluster
cohesion energies, liquid structure, and fcc solid are in excellent
agreement with the benchmarks.

2. Self-Consistent Polarization Density Functional Theory

2.1. Definition of the Method. The SCP-DFT approach has
been implemented within the CP2K package55 and is described
in detail below. We write the DFT energy functional as

EDFT[FDFT] ) T[FDFT] + EXC[FDFT] + EH[FDFT] (1)

where T[FDFT] and EXC[FDFT] are kinetic energy and exchange-
correlation functionals, respectively, and EH is the Hartree
functional,

EH[FDFT] ) ∫ dr dr′ FDFT(r)FDFT(r′)

|r - r′|
(2)

We supplement the DFT charge density, FDFT, with the SCP
charge density, FSCP, to construct the total charge density, F )
FDFT + FSCP. Within a Kohn-Sham representation,
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FDFT(r) ) ∑
A

ZAδ(r - rA) - ∑
γ,µ,ν

Pµν
γ

φµ(r)φν(r) (3)

where Pµν
γ is the density matrix corresponding to spin γ, φµ(r)

is an atomic basis set centered on the position rµ, and ZA are
core charges located at positions rA. The SCP density is
represented as

FSCP(r) ) ∑
R

cR�R(r) (4)

where �R(r) are auxiliary basis functions. We supplement the
DFT energy functional as

E[FDFT, FSCP] ) T[FDFT] + EXC[FDFT] + EH[FDFT] +

EDFT-SCP
(e) + EDFT-SCP

(N) + ESCP-SCP + ESCP
disp (5)

where the SCP charge density interacting with the DFT electron
density is

EDFT-SCP
(e) ) - ∑

µ,ν,R
Pµν

T cR(µν|R)fµνR (6)

with Coulomb integrals

(µν|R) ) ∫ dr dr′ φµ(r)φν(r)�R(r′)

|r - r′|
(7)

The SCP charge density interacting with the DFT core density
is given by

EDFT-SCP
(N) ) ∑

A,R
ZAcR(A|R)fAR (8)

with Coulomb integrals

(A|R) ) ∫ dr′ �R(r′)

|rA - r′|
(9)

Here fµνR and fAR are screening functions that damp the Coulomb
interactions when they involve auxiliary sites at short distances:
fAR ) 0 when rA ) rR and fµνR ) 0 when rµ ) rν, rµ ) rR, or
rν ) rR. The SCP-SCP self-interaction is given by

ESCP-SCP ) 1
2 ∑

R,�
cRc�{ 1

aR
δR,� + (R|�)fR�} (10)

where the Coulomb integral is given by

(R|�) ) ∫ dr dr′ �R(r)��(r′)

|r - r′|
(11)

and fR� is a screening function. The generalized polarizability
is aR. A self-consistent expression for the dispersion interaction
is

ESCP
disp ) - 1

8 ∑
R,�

IRI�

IR + I�
aRa�(R|�)2fR�

2 (12)

The self-consistent procedure consists of the two variational
conditions,

δ
δFDFT

E[FDFT, FSCP] ) 0 (13)

and

δ
δFSCP

E[FDFT, FSCP] ) 0 (14)

The DFT charge density is subject to the orthonormality
constraint. Explicitly, if the density matrix is represented in terms
of the molecular orbitals, Cµi

γ ,

Pµν
γ ) ∑

i

ni
γCµi

γ Cνi
γ (15)

where ni
γ are orbital occupancies, to give

∑
µ,ν

Cµi
γ SµνCνj

γ ) δij (16)

with

Sµν ) ∫ dr φµ(r)φν(r) (17)

The only constraint on the SCP charge density is that no extra
charge is generated (net monomer SCP moment is zero),

∫ drFSCP(r) ) 0 (18)

The variational procedure leads to the standard self-consistent
field equations

Fµν
γ Cνi

γ ) SµνCνi
γ εi (19)

where the Fock matrix (Kohn-Sham matrix)

Fµν
γ ) ∂

∂Pµν
γ

E[FDFT, FSCP] (20)

is decomposed into the unmodified DFT Fock matrix, Fµν
γ(0), and

the perturbation due to SCP, ∆Fµν
γ ,

Fµν
γ ) Fµν

γ(0) + ∆Fµν
γ (21)

where

∆Fµν
γ ) -∑

R
cR(µν|R)fµνR (22)

In terms of SCP coefficients, cR, the SCP variational expression
becomes

∂

∂cR
E[FDFT, FSCP] ) 0 (23)

or

∑
�

c�{ 1
aR

δR,� + (R|�)fR�} - ∑
µ,ν

Pµν
T (µν|R)fµνR

+ ∑
A

ZA(A|R)fAR ) 0 (24)

leading to the linear response of the SCP coefficients to the
external multipole Coulomb field

cR ) aRΦR (25)

where the multipole field is given by

ΦR ) -∑
�

c�(R|�)fR� + ∑
µ,ν

Pµν
T (µν|R)fµνR

- ∑
A

ZA(A|R)fAR (26)

2.2. Screening Function. We write for the pair screening
function
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fµν ) 1 - e-(σµ+σν)Rµν(1 + 1
2

(σµ + σν)Rµν) (27)

where Rµν ) |rµ - rν| and the coefficients σµ determine the
effective screening length. We will construct triplet screening
functions as

fµνR ) 1 - (1 - fµν)(1 - fµR)(1 - fνR) (28)

In initial implementations, we will take the limit σµf ∞, giving

fµν ) 1 - δAµ,Aν
(29)

where Aµ is an atom site label associated with orbital µ. In future
work we will consider other forms for this screening and its
relation to the parametrization and efficiency of the method.

2.3. Dispersion. To evaluate the expression for the dispersive
interaction between two auxiliary charge densities, first consider
the energy for an auxiliary charge density in an external
multipole field,

E ) ∑
R

( cR
2

2aR
- cRφR) (30)

With ∂E/∂cR ) 0,

cR ) aRφR (31)

This represents the response of the auxiliary polarization density
matrix, cR, to an external field, φa, where aR is a generalized
polarizability. For interacting auxiliary charge densities, the
energy is

E ) 1
2 ∑

R,�
cRc�{ 1

aR
δR,� + (R|�)fR�} (32)

If we consider the interaction as a quantum mechanical perturbation
converting density coefficients cR to quantum mechanical operators
ĉR,

V̂ ) ∑
R<�

ĉRĉ�(R|�)fR� (33)

then a second-order perturbation theory expression for the
dispersion energy may be written as

Edisp ) ∑
R<�

∑
R̄<�̄

(R|�)fR�(R̄|�̄)fR̄�̄

× ∑
k*0

∑
l*0

〈0|ĉR|k〉〈 0|ĉ�|l〉〈 k|ĉR̄|0〉〈 l|ĉ�̄|0〉

E0
R + E0

� - Ek
R - El

�
(34)

where Ek
R denotes an excitation of the uncoupled Hamiltonian

with potential energy cR2/2aR on site R, and R and Rj denote
different multipoles on an identical site. In terms of this notation,
the multipole dispersion interaction may be written in a
“Casimir-Polder” form (the reader is referred to, e.g., the work
of Longuet-Higgins56 and also of Misquitta et al.17 and
additional references therein) as

Edisp )

- 1
2π ∫0

∞
dω ∑

R<�
∑
R̄<�

aR,R̄(iω)a�,�̄(iω)(R|�)fR�(R̄|�̄)fR̄�̄ (35)

where aR, Rj(iω) is a generalized, multipole dynamic polarizabil-
ity,

aR,R̄(ω) ) 2 ∑
k*0

Ek
R - E0

R

(Ek
R - E0

R)2 - ω2
〈0|ĉR|k〉〈 k|ĉR̄|0〉 (36)

If it is assumed that

aR,R̄(iω) ) aR

IR
2

IR
2 + ω2

δR,R̄ (37)

then we recover the generalized, multipole, London dispersion
expression that is consistent with the multipole polarizabilities used
in eq 12.

3. Computational Details

The DFT and SCP-DFT calculations were performed using
the CP2K/Quickstep package55,57 in conjunction with the
BLYP36,37 XC functional and Goedecker-Teter-Hutter-style
pseudopotential.58-60 Our Ar2 interaction energy calculations
using BLYP revealed that the DZVP basis set gave similar
results to the nearly complete and essentially BSSE-free QZV3P
basis set (see Figure 1). The former basis was then used in the
majority of the calculations, while the latter basis continued to
serve as a benchmark.

In CP2K, nonperiodic calculations (i.e., cluster calculations)
are performed using the nonperiodic option with the
Martyna-Tuckerman61 Poisson solver. Alternatively, for un-
charged and nonpolar systems, it is simple to use periodic
boundary conditions (PBC) with a large amount of vacuum to
reduce the spurious interactions between images. We found the
latter option with a cubic box of side length of 30 Å performed
well in terms of lower memory and time requirements. In order
to reduce grid effects for our dimer and trimer energy calcula-
tions, the energy cutoff used for expansion of the electron
density in plane waves was set to a relatively high value of
500 Ry while the SCF energy convergence threshold was
tightened to 10-8 hartree/atom. The wave function optimization
was performed with the orbital transformation (OT) method
using the conjugate gradient (CG) algorithm. For our cluster
calculations, the plane wave cutoff was 200 Ry, energy
convergence was 10-6 hartree/atom, and convergence of gradient
was 4.5 × 10-4 hartree/Å.

The liquid argon calculations were performed in a supercell
containing 96 atoms. The cell parameter of the cubic box
containing the sample was chosen to be 16.7 Å, resulting in a
density of 1.37 g/mL, which is in reasonable agreement with
the density of 1.396 g/mL reported by the CRC Handbook62

for liquid argon at its boiling point (87.3 K). The initial
configuration was obtained using standard Monte Carlo (MC)
in the NpT ensemble with a Lennard-Jones (LJ) argon potential.
The LJ parameters for argon, σ ) 3.40 Å and ε ) 114.99 K,
were determined from the precise vapor-liquid equilibrium
(VLE) simulations for Lennard-Jonesium by Potoff and Pana-
giopoulos63 and the experimental argon VLE data of Michels
et al.64 by taking the appropriate ratios of the critical properties
of Lennard-Jonesium to the experimental critical properties of
argon, i.e., ε ) Tc/Tc

* and σ ) (Fc
*/Fc)1/3. It is important to note

here that this parametrization leads to an effective LJ potential
that is appropriate for condensed phases and implicity includes
many-body terms and nuclear quantum effects.65 A well-
equilibrated configuration of LJ argon was used as the starting
configuration for a SCP-DFT molecular dynamics (MD) simula-
tion in a periodically replicated cubic cell. The MD simulation
was performed in the NVT ensemble using the method of Nosé
and Hoover66-69 with a time step of 0.5 fs. The system was
equilibrated for 10 ps, followed by 25 ps of production for the
accumulation of averages. The last 10 ps are presented in our
final results. The distance cutoff for the summation of the
dispersion contribution to the SCP-DFT energy was 11 Å. The
cutoff for the electron density was 200 Ry, while the SCF energy
convergence threshold was 10- 6 hartree/atom. The OT method70
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with the DIIS minimizer was used in the dynamics calculations
for the optimization of the wave function.

The SCP-DFT calculations on the Ar face-centered cubic (fcc)
solid were performed at the Γ-point only (due to limitations of
CP2K) using a 32 atom cell. The nearest-neighbor separation,
rss (or equivalently, the lattice parameter a ) √2rss), was
changed, and the cell lattice vectors and atomic positions were
likewise scaled as DFT calculations were performed, thus
obtaining the cohesion energy per atom as a function of rss.
The cohesion energy per atom is given by Ecoh(rss) ) (En(rss) -
nE1)/n, where En and E1 are the energies of n atoms and 1 atom,
respectively. Due to numerical artifacts associated with a finite
charge density grid, and to ensure a smooth cohesion energy
curve, it was necessary to compute the reference energy of the
argon monomer in the identical cell, that is, to use the value
E1(rss) in the above equation. The distance cutoff for the
summation of the dispersion contribution to the SCP-DFT
energy was 11 Å. To ensure accuracy, a density cutoff of 300
Ry was utilized with an SCF energy convergence threshold of
10- 8 hartree/atom. Identical results were obtained when a higher
density cutoff of 1000 Ry was used. To check convergence with
respect to cell size (or, equivalently, k-points), we confirmed
that use of a 108 atom cell also yielded nearly identical results.

4. Parameterization

As alluded to in section 1, our choice in developing the SCP-
DFT theory is that many of the parameters are determined for
us by the choice of XC functional. Thus, in principle, for
structureless particles such as argon, the parametrization of the
potential should be straightforward. Indeed this is the case. The
parameters that must be determined for SCP-DFT are the choice
of the auxiliary basis set and the parameters for the polariz-
ability, aR, and London dispersion, IR. In CP2K/QUICKSTEP
the basis set is the standard contracted Gaussian basis set. The
auxiliary basis set is of the same form, namely, �R(r) ) ∑idiRgi(r)
and yields the (unnormalized) auxiliary density via eq 4. Here,
R is the index for the density, d is the contraction coefficient,
and g is a primitive Gaussian function with width determined
by a single parameter 
 (in units of 1/bohr2). In preliminary
applications we have used only a single Gaussian function, of
p symmetry. The latter choice ensures that the asymptotic
behavior of the argon dimer interaction energy, dominated by
the dispersion contribution defined by eq 12, will be of the
correct r-6 form.

The finite-field approach was used within CP2K to fit the
SCP parameter aR in order to reproduce the accurate static dipole
polarizability R ) 11.085 ( 0.06 au recently recommended by
Lupinetti and Thakkar71 based on their finite field, large basis
set CCSD(T) calculations (with an estimate of the relativistic
correction), a theoretical value very close to the experimental
one of 11.075 ( 0.006 au.62

The change in energy of a neutral atom in the presence of an
applied electric field of strength F ) |F| is given by

∆E ) E(F) - E(0) ) -RF2

2!
- γF4

4!
- · · · (38)

where E(F) and E(0) are the field-dependent and field-free
energies, R is the polarizability, and γ is the hyperpolarizability.
Ignoring the hyperpolarizability, we have

∆E ) -RF2

2
(39)

We generated fields by placing point charges (Q (where Q
ranged from 0.1 to 5.0 au) at positions z ) (5 Å relative to an

argon atom at the origin (thus ensuring that the field gradient
vanished at the origin). Hence the field at the origin,

F(0) ) - 2Q

Z2
ẑ (40)

ranged from approximately 0.00224 to 0.112 au. For compari-
son, Lupinetti and Thakkar71 used fields ranging from 0.0044
to 0.0176 au.

Since E(0), E(F), and ∆E are all parametrically dependent
on the SCP parameters 
 and aR, we performed calculations for
various fixed values of 
 and aR, each time varying the fields
so as to extract R from a least-squares fit of ∆E versus F in eq
39. As 
 increases the argon atom becomes more point-charge-
like. Finally we chose a reasonable 
 ) 0.2 and only considered
p (or dipole) polarization density functions. This choice of 

reflects our choice of screening function in that in the present
study we rely on the natural screening due to the overlap of
two overlapping Gaussian charges. For argon this choice of
trivial screening allows for a stable theory. However, a more
robust choice for the screening will be investigated in future
publications. Thus, utilizing only the dipole auxiliary charge
density, we fix aR ) 2.91×10-4 yielding a polarizability, R )
11.086 ( 0.001 au, which is in very good agreement with the
target value of 11.085 au.71

After fixing 
 and aR to reproduce the known polarizability,
one additional parameter IR is needed to reproduce the argon
dimer potential of Aziz,51 which is generally accepted as the
most accurate empirical potential. Specifically, we chose IR )
3.977 au to reproduce the interaction energy of the Aziz potential
at an interatomic separation of 3.60 Å. The resulting SCP-DFT
value of -0.2581 kcal/mol agrees quite nicely with the Aziz
value of -0.2579 kcal/mol.

One should be reminded that unlike calculations with LDA
or PBE XC functionals,32 the BLYP argon dimer potential is
completely repulsive. This feature actually facilitates the use
of the SCP-DFT correction to account for the missing attractive
component of the interaction energy.

5. Results

5.1. Dimer Potential. We computed the Ar2 potential over
the range r ) 2.10-10.0 Å at every 0.1 Å. Our SCP-DFT
potential agrees quite nicely with the Aziz potential,51 our
benchmark empirical potential, in the region of the repulsive
wall and the potential well (see top panel of Figure 1). We also
compared our results to the highly accurate ab initio CCSD(T)
with complete basis set limit extrapolation potential of Patkowski
et al,52 (CCSD(T)/CBS), and the effective Lennard-Jones (LJ)
potential for argon described above (which is, of course, too
repulsive at short separation). The largest discrepancy of the
SCP-DFT potential from the benchmarks is in the region of
the tail, where it is too negative (see bottom panel of Figure 1).
Since the tail region is given by the dispersion expression in eq
12, and our use of p functions ensures an r-6 falloff, to extract
additional information about this region (and also to enable
efficient calculation of the virial coefficients, see below), we
fitted the calculated SCP-DFT interaction energies in the range
r ) 6.5-7.0 Å using the form -C6r-6, and obtained C6 ) 130
au, which is too large compared to the correct value72 of 64.691
au. This discrepancy is likely due to our attempt to model the
dispersion interaction present in the Aziz potential (which
contains also C8 and C10 coefficients) using only the leading-
order term. In future, we will use d auxiliary functions in
addition to the p functions, together with appropriate screening
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or damping functions, and this is expected to lead to better
performance in the tail region.

Table 1 compares the minimum separations re and the binding
energies De of Ar2 obtained from different methods to ab initio
and empirical benchmarks. Upon examining the pure DFT
results, we see that the LDA and PW91 XC functionals overbind
the dimer, whereas PBE and revPBE underbind and BLYP is
purely repulsive. Of the corrected DFT methods, the DCACP-
DFT method26 gives a result that is in good agreement with the
MP2 value to which it was fit (basis-set converged MP2,
however, overbinds Ar2). However, we stress that this approach
is not physical and cannot reproduce the asymptotic limit of
the interaction energy curve. As pointed out by Scoles and
coworkers,5,32 among others, the DFT-D approaches, although
justified on physical grounds, require the use of an XC functional
that has minimal attraction in order to avoid double-counting.
By adding a dispersion correction to PW91, which already
overbinds, Ortmann et al.45 err in this regard. The more complex
vdW-DFT28 model also overbinds. The method of Becke and
Johnson47 underbinds the dimer, while that of Silvestrelli46 yields
a minimum separation that is too large by over 0.2 Å. Our SCP-
DFT result, which requires fitting of only two independent
parameters, obviously agrees quite well with the benchmarks.
As the LJ potential parameters were determined from VLE
properties, it is not surprising that it does not perform as well
as the other methods for the dimer.

5.2. Second Virial Coefficients. The second virial coef-
ficient, B2(T), of a pure substance or mixture depends solely on
the two-body intermonomer potential.73 Due to the importance
of the virial equation of state in thermal physics, experimental
data exists for many substances. This allows one to readily assess
the accuracy of model potentials. The second virial coefficients
can be expressed as the sum of the classical term and quantum
corrections,

B2(T) ) Bc(T) + Bq(T) (41)

For an atom-atom two-body potential V2(r),

Bc(T) ) -2π∫0

∞
dr r2[e-V2(r)/kBT - 1] (42)

where T is the temperature and kB is Boltzmann’s constant.
Quantum corrections become important at lower temperatures
and can be expressed as a series in h2, where h is Planck’s
constant.73 At the lowest temperature that we considered, 100
K, the first term in this expansion is sufficient to account for
more than 95% of the full quantum correction74 to the virial
coefficient of Ar (about 1.50 cm3 mol-1 with various poten-
tials52). Thus, one can approximate the quantum corrections by
their leading term, given by

Bq(T) ) h2

24πm(kBT)3 ∫0

∞
dr r2 e-�V2(r)(dV2

dr )2

(43)

For the LJ model potential, converged results were obtained
using trapezoidal numerical integration over the range 0-50 Å
with a step size of 0.001 Å. For the SCP-DFT potential, these

Figure 1. Interatomic potentials for Ar2. The top and bottom panels
show the whole potential and its tail, respectively. The insets show
close-ups. Aziz51 (black circles), CCSD(T)/CBS52 (green right triangles),
LJ (red squares), BLYP/QZV3P (purple up triangles), BLYP/DZVP
(cyan down triangles), and SCP-DFT (blue left triangles). Lines are
shown to guide the eye.

TABLE 1: Argon Dimer Minimum Atom-Atom Separation
re and Binding Energy De, As Obtained from the Literature
or by Harmonic Fits to Our Results in the Region of the
Minimuma

method or potential re (Å) De (kcal/mol)

DFT
LDA32 3.42 0.698
PW9145 3.97 0.318
PBE32 4.04 0.137
revPBE46 4.67 0.039
BLYP/QZV3P n/a n/a
BLYP/DZVP n/a n/a

DFT with corrections
DCACP-DFT(BLYP)b 26 3.9 0.23
vdW-DF(revPBE)c 28 3.9 0.46
DFT-D(PW91) (Ortmann)45 3.97 0.353
DFT-D(B97-1) (Becke)47 3.9 0.240
DFT-D(revPBE) (Silvestrelli)46 4.03 0.274
SCP-DFT 3.788 0.2857

ab initio calculations and benchmarks
MP2d 85 3.88 0.2253
MP232 3.77 0.311
CCSD(T)/CBS52 3.767 0.2838

empirical calculations and experimental benchmarks
LJ (effective 2 body)e 3.82 0.229
Aziz51 3.757 0.2846
experiment86 3.761 0.284

a Note that zero-point effects are not included. “n/a” indicates
that the curve is repulsive. Results of this work are highlighted in
bold font. b von Lilienfeld et al.25 fit the parameters of their
optimized effective core potential to reproduce their MP2/
aug-cc-pVTZ results. c From Table 4 of Bruch et al.87 d A relatively
small basis set was used in this work. e re ) 21/6σ and De )
-VLJ(re), but this effective potential implicitly accounts for
zero-point effects.
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integration parameters remained the same, but for numerical
and efficiency reasons, the integration was performed piecewise
over three regions. In the region r ) 0-2.1 Å, excellent results
were obtained simply by setting the potential to a large positive
value (resulting in a Mayer function equal to -1). For r )
2.1-7.0 Å, local cubic splines were used to interpolate the
potential. Finally, in the region r ) 7.0-50 Å, the potential
was extrapolated using the form fitted in section 5.1, -C6r- 6.

The virial coefficients are presented in Table 2 and Figure 2.
Compared to the experimental data compiled by Dymond and
Smith,75 and the highly accurate results of the Aziz51 and
CCSD(T)/CBS52 potentials, which are in excellent agreement
over the entire temperature range, the virial coefficients obtained
using the SCP-DFT potential are too negative while the LJ virial
coefficients have the opposite problem. These deviations are
largest at low temperatures, where the magnitude of the virial
coefficient is most dependent on the volume of the potential
well. These results could have been predicted from the fact that
the overly negative tail for the SCP-DFT potential leads to a
volume of the potential well that is too large while the effective
LJ potential has a minimum that is too shallow (see Figure 1).
Thus the SCP-DFT potential performs nearly as well as the
effective LJ potential in terms of percent deviation from
experiment. This in itself is an accomplishment given that the
bare DFT produces a repulsive two-body potential.

5.3. Cluster Cohesion Energies. As a further test of the
transferability of the SCP-DFT potential, we calculated the
energies of small argon clusters containing n ) 2-10 atoms.

The configurations were optimized for the Aziz potential51 by
Naumkin et al.76 and are downloadable from the Cambridge
Cluster Database.77 Our cluster calculations were performed
using the LJ, BLYP/DZVP, BLYP/QZV3P, and SCP-DFT
potentials. Note that the Aziz potential used by Naumkin and
co-workers is strictly a two-body potential, while the LJ potential
is an effective two-body potential (i.e., fit to bulk properties),
and the BLYP potentials include many-body nonadditive effects.
Use of a pure two-body potential in the work of Naumkin et al.
was justified since the many-body effects in rare gases are
known to be small (though significant in the solid, see below).
As Figure 3 shows, BLYP without SCP does not form mutually
binding clusters. However, the decent agreement between the
BLYP/DZVP and BLYP/QZV3P results shows the fast con-
vergence of DFT methods with respect to basis set size. This
justifies the choice of the DZVP basis set for the SCP-DFT
calculations on the clusters. Moreover, the LJ potential results
in clusters which are somewhat underbound, which is not
surprising given that the dimer potential is too repulsive, while
the SCP-DFT potential yields clusters which are slightly
overbound. The overbinding with SCP-DFT is almost certainly
due to an overestimation and wrong sign (and thus attraction
rather than repulsion) of the many-body effects with BLYP;
further discussion of the problems of BLYP with many-body
effects appears below.

5.4. Liquid Structure. We also examined whether our
excellent agreement with gas phase clusters also holds for the
liquid phase by computing the radial distribution function (RDF)
at 85 K. Figure 4 shows excellent agreement between the RDF
obtained using SCP-DFT with the experimental RDF and the
one obtained using the effective LJ potential. Note that whereas

TABLE 2: Comparison of Second Virial Coefficients (in cm3/mol) at Various Temperatures (in K)

T expt75 CCSD(T)/CBS52 Aziz51,52 LJ SCP-DFT

100.0 -183.5 ( 1.0 -181.84 -181.98 -159.30 -227.73
150.0 -86.2 ( 1.0 -85.81 -85.99 -77.63 -114.12
200.0 -47.4 ( 1.0 -47.63 -47.89 -43.29 -68.13
250.0 -27.9 ( 1.0 -27.37 -27.70 -24.57 -43.47
300.0 -15.5 ( 0.5 -14.92 -15.30 -12.88 -28.18
400.0 -1.0 ( 0.5 -0.60 -1.03 0.78 -10.41
500.0 7.0 ( 0.5 7.26 6.78 8.37 -0.55
600.0 12.0 ( 0.5 12.13 11.62 13.12 5.63
700.0 15.0 ( 1.0 15.37 14.85 16.32 9.81
800.0 17.7 ( 1.0 17.66 17.12 18.58 12.77
900.0 20.0 ( 1.0 19.32 18.77 20.24 14.96

1000.0 22.0 ( 1.0 20.56 20.00 21.50 16.63

Figure 2. Second virial coefficients of argon: experiment75 (cyan up
triangles), Aziz51,52 (black circles), CCSD(T)/CBS52 (green right
triangles), LJ (red squares), and SCP-DFT (blue left triangles). Virial
coefficients for the Aziz51 and CCSD(T)/CBS52 potentials were
calculated by Patkowski et al.52 and are taken from Table 5 of that
reference. Inset shows a plot of B2

sim/B2
exp. The largest deviations occur

near the Boyle temperature.

Figure 3. Cohesion energies (per atom) of Arn clusters for various
cluster sizes n: Aziz51 (black circles), LJ (red squares), BLYP/QZV3P
(purple up triangles), BLYP/DZVP (cyan down triangles), and SCP-
DFT (blue left triangles).
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the thermodynamics and energetics of liquid argon are quite
sensitive78 to the many-body effects (see more on the role of
the three-body nonadditivity in the solid below), the structure
of the liquidsand therefore the RDFsis not,78 which explains
the good agreement of the SCP-DFT RDF with experiment.

5.5. FCC Solid and Role of Three-Body Nonadditivity.
As the finalsand more sensitivestest, we used SCP-DFT to
obtain the cohesion energy of the fcc argon solid. As with the
liquid and the clusters, SCP-DFT calculations were initially
performed with BLYP for the DZVP basis set. However, as
these results were unsatisfactory (see Figure 5 and Table 3),
we decided to perform the same calculations using the more
complete QZV3P basis set. Since polarization is zero in the
crystal (by symmetry), the dispersion is only determined by the
postprocessed London dispersion expression and does not enter
the total energy through the SCF calculation. Hence calculations
for SCP-DFT with BLYP/QZV3P can be performed without
reparameterization. Calculations for BLYP with the QZV3P
basis set showed that the BSSE in the crystal is larger than in
the clusters, as a comparison of Figures 3 and 5 shows.
Replacement of the BLYP/DZVP with the nearly basis-set
complete BLYP/QZV3P energies in determination of the SCP-
DFT cohesion energies reduces our initial error in the cohesion
energy with respect to the Lotrich79 (2 + 3 body)51,53 benchmark
from a discrepancy of -0.70 kcal/mol (-35% error) for SCP-
DFT/DZVP to -0.35 kcal/mol (-17% error) for SCP-DFT/
QZV3P (see Table 3).

Given that the initial success of SCP-DFT for the argon
clusters and the liquid was better than the above-mentioned 0.35
kcal/mol discrepancy that we obtained for the solid, additional
investigation into the reasons for this discrepancy was necessary
in order to understand the limitations of SCP-DFT. To this end,
it is important to remember that crystal energetics are more
sensitive to many-body effects. Although the many-body effects
in rare-gas clusters are small, they are known to contribute
3-7% to the cohesion energy of rare-gas solids (Ne through
Xe); specifically, in Ar the many-body contribution is about
6%.80 For this reason, we examined the leading-order many-
body effect, the three-body nonadditivity, defined as

V3 ) E(ri, rj, rk) - E(ri, rj) - E(ri, rk) - E(ri, rk) +
E(ri) + E(rj) + E(rk) (44)

for a trimer, where the energies on the right-hand side of the
equation are the total energies of the trimer, the dimers, and
the monomers comprising the trimer. Asymptotically, the well-

known Axilrod-Teller-Muto81,82 triple-dipole dispersion com-
ponent of the three-body nonadditivity is known to properly
represent the three-body nonadditivity of rare-gas trimers, where
the standard ATM term for a trimer is given by

V3
ATM ) υ

(1 + 3 cos θi cos θj cos θk)

(rijrjkrik)
3

(45)

and the triangle’s side lengths and angles have their obvious
meanings. We used an accurate value of the ATM parameter υ
) 521.7 au.83

As in Podeszwa et al.54 we computed the leading-order
nonadditive contributions to the interaction energy of argon
trimers arranged in an equilateral configuration. These configu-
rations are known to have the largest contributions to the
nonadditive part of the cohesion energy of the fcc solid, although
the contribution is still quite small. Figure 6 shows that BLYP
(with and without SCP) gives a negative value for the three-
body nonadditivity of the Ar3 interaction energy in the region
of greatest interest for the solid (3.5-4.0 Å), although the trend
is correct. The correct result, given by the CCSD(T) curve, and
asymptotically by the ATM curve, is positive. This figure also
explains why our cluster cohesion energies are more negative
than those given by the LJ potential (see Figure 3).

This behavior of BLYP is the opposite of the nonempirical
DFT XC functionals (LDA, PBE, TPSS, etc.), where the three-
body nonadditivity of rare gases is positive and larger than the
true value, as Tkatchenko and von Lilienfeld84 have shown.
Adding an additional positive ATM term in that situation only
makes the error worse, as has been observed.84

Since our SCP-DFT model in its present formulation does
not account for the many-body dispersion that is missing in
BLYP, we are at liberty to add a simple correction in the form
of an ATM term. The ATM contribution to the fcc lattice energy
was obtained by performing a three-body sum of eq 45 over a
(nonperiodic) lattice. To obtain a value converged to 0.01 kcal/
mol, it was necessary to sum over a lattice of n ) 1372 atoms.
We used a spherical cutoff of rcut ) 2a for all three side lengths,
where a is the lattice constant, a ) �2rss, and rss is the nearest-
neighbor separation within the lattice. Near the experimental
separation, at rss ) 3.7 Å (rcut ) 10.4 Å), the ATM contribution
is 0.15 kcal/mol, in reasonable agreement with the three-body
SAPT contribution of 0.1362 kcal/mol at rss ) 3.7508 Å found
in the work of Lotrich and Szalewicz.79

To simultaneously correct for the negative three-body con-
tribution coming from BLYP and include the missing many-
body dispersion, we determined that we needed to add twice
the standard value of the ATM term. (Note that this analysis
and the factor of 2 is only preliminary; in any case, a detailed
study of the three-body corrections to the dispersion contribution
is outside the scope of this work.) This addition had the effect
of reducing the remaining discrepancy relative to the Lotrich79

(2 + 3 body)51,53 benchmark from -0.35 to only -0.07 kcal/
mol (-3% error). Our final cohesion energy obtained in this
manner is labeled SCP-DFT/QZV3P/2 × ATM and agrees quite
well with accurate benchmarks. Table 3 compares our results
for the minimum separation (rss, min), the cohesion energy per
atom (Ecoh), and the bulk modulus (B0) of fcc solid Ar with a
wide set of results from the literature. Since the two-body
potential provides the most important contribution to the
interaction energy for rare gases, the various pure DFT XC
functionals perform in an analogous manner as they did for Ar2

(see Table 1). Of the corrected DFT approaches in the literature,
ACFDT with the PBE functional does reasonably well. Our
SCP-DFT/QZV3P/2 × ATM result compares very well with

Figure 4. Radial distribution functions of liquid argon at 85 K:
experiment93 (black solid line), LJ (red dashed line), and SCP-DFT
(blue dash-dotted line).
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the accurate benchmarks. The LJ potential also performs quite
well, much better than it did for the dimer, as it was parametrized
to bulk properties.

6. Conclusion

Driven by the need to perform accurate statistical mechanical
sampling and chemistry in the condensed phase, we have
developed an efficient correction to DFT based on linear
response theory with the addition of auxiliary polarization
functions to account for classical many-body polarization and
a self-consistent treatment of two-body dispersion interactions.

Moreover, SCP-DFT, as applied to argon, requires just two
independent parameters, aR (which itself depends on 
R) and
IR. They are determined by fitting to the known polarizability
and a single point on the accurate dimer potential curve,
respectively. With these two parameters, we are able to
reproduce accurate structural, energetic, and thermodynamic
quantities in all three phases of argon; a case study in weak
interactions. Future work will include calculations of the
vapor-liquid equilibria of argon, as well as simulations of liquid
argon under high pressures. Improvements to the current theory
are underway and incorporate more polarization functions, i.e.,
s and d functions (only the latter would be allowed to contribute
to the dispersion term), as well as an environmental (or atomic
charge-state) dependence of the corresponding multipole po-
larizability parameters aR and a more rigorous screening
function. Note that the latter will effect the charge balance in

TABLE 3: Argon fcc Crystal Minimum Nearest-Neighbor Separation rss, min (and, Equivalently, Minimum Lattice Constant
amin), Cohesion Energy (per Atom) Ecoh, and Bulk Modulus B0, As Obtained from the Literature or by Harmonic Fits to Our
Results in the Region of the Minimuma

method or potential rss, min (Å) amin (Å) -Ecoh (kcal/mol) B0 (GPa)

DFT
LDA29 3.5 4.9 3.2 –
PW9145 4.3 6.1 – 0.83
PBE29 4.2 6.0 0.51 –
BLYP n/a n/a n/a n/a

DFT with corrections
ACFDT-LDA29 3.8 5.4 1.4 –
ACFDT-PBE29 3.7 5.3 1.9 –
DFT-D(PW91) (Ortmann)45 4.2 6.0 – 0.91
SCP-DFT 3.66 5.17 2.73 6.0
SCP-DFT/QZV3P 3.70 5.24 2.38 3.9
SCP-DFT/QZV3P/2 × ATM 3.75 5.31 2.10 4.5

ab initio calculations and benchmarks
LMP285 3.68 5.20 2.1354 2.79
CCSD(T)80 3.736 5.284 1.9098 2.72
Lotrich79 (2 body51) 3.7508b 5.3044 2.1709 –
Lotrich79 (2 + 3 body51,53) 3.7508b 5.3044 2.0347 –

empirical calculations and experimental benchmarks
LJ (effective 2 body) 3.74 5.29 1.94 3.0
experiment 189 3.7508 5.3044 2.0283c –
experiments 2-490-92 3.7090 5.2390 2.050791 2.3892

a B0 was obtained88 as B0 ) (1/(9crss, min))(((∂2Ecoh)/(∂rss
2 ))(rss, min)), where c ) 1/�2 for the fcc crystal. Note that zero-point effects are not

included. “n/a” indicates that the curve is repulsive. Final results of this work are highlighted in bold font. See the text for additional details.
b Lotrich and Szalewicz79 presented results at the minimum experimental separation given in ref 89. c This value has been obtained by
subtracting the zero-point effects estimated by Lotrich and Szalewicz.79

Figure 5. Cohesion energy curves (per atom) of argon fcc solid as a
function of nearest-neighbor separation. Note that zero-point effects
are not included. Experiment 189 (green diamond), Lotrich79 (2 body51)
(black open circle), Lotrich79 (2 + 3 body51,53) (black closed circle),
LJ (red squares), BLYP/QZV3P (purple up triangles), BLYP/DZVP
(cyan down triangles), SCP-DFT (blue open left triangles), and SCP-
DFT/QZV3P/2 × ATM (blue close left triangles). Inset shows a close-
up of the minimum region. See the text for details.

Figure 6. Three-body nonadditive interaction energies of Ar3 in the
equilateral configuration: CCSD(T)54 (green right triangles), ATM (red
circles), BLYP/QZV3P (purple up triangles), BLYP/DZVP (cyan down
triangles), and SCP-DFT (blue left triangles).
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the system. Although these extensions to the theory are
important, we are confident that the formulation presented in
this manuscript is sufficient to accurately describe rare gases.
Future studies will focus on molecular liquids such as water
where DFT in conjunction with BLYP is known to underbind
the clusters. Hence, SCP-DFT should be an ideal candidate to
describe the subtle interactions giving rise to the correct
thermodynamics and spectra in this important and well-
characterized liquid.
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